• 已删除用户
Ting
发布于 2025-05-09 / 10 阅读

论文发表

  1. Z. Wu, S. Lv, R. Liu, T. Guo, D. Wang, H. Fei, Structural and electronic modulations of Se-vacancy-rich MoSe2 triggered by Cr doping toward robust nitrogen reduction reaction, Small 21 (2025) 2408243. https://doi.org/10.1002/smll.202408243
  2. S. Mariotti, I.N. Rabehi, C. Zhang, X. Huo, J. Zhang, P. Ji, T. Wu, T. Li, S. Yuan, X. Liu, T. Guo, et al., Unraveling the morphological and energetic properties of 2PACz self-assembled monolayers fabricated with upscaling deposition methods, Energy Environ. Mater. 8 (2025) e12825. https://doi.org/10.1002/eem2.12825
  3. T. Li, F. Krumeich, L.K. Ono, T. Guo, R. Morimoto, C. Ding, Z. Xu, M. Liu, Y. Qi, Exploring niobium oxide-based materials for fast-charging lithium-ion anodes: insights from structure to property, Mater. Sci. Eng.: R: Rep. 162 (2025) 100887. https://doi.org/10.1016/j.mser.2024.100887
  4. T. Guo, H. Fei, S. Lv, F. Liu, D. Wang, Z. Wu, Computationally guided construction of optimal Mo2C/C electrocatalysts toward high-efficiency hydrogen evolution reaction, Appl. Surf. Sci. (2025) 163109. https://doi.org/10.1016/j.apsusc.2025.163109
  5. T. Wu, S. Mariotti, P. Ji, L.K. Ono, T. Guo, I.-N. Rabehi, S. Yuan, J. Zhang, C. Ding, Z. Guo, et al., Self-assembled monolayer hole-selective contact for up-scalable and cost-effective inverted perovskite solar cells, Adv. Funct. Mater. 34 (2024) 2316500. https://doi.org/10.1002/adfm.202316500
  6. X. Liu, J. Zhang, H. Wang, Y. Miao, T. Guo, L.K. Ono, S. Yuan, Y. Wang, P. Ji, H. Chen, C. Zhang, T. Li, C. Ding, S. Mariotti, X. Huo, I.-N. Rabehi, H. Wang, Y. Zhao, Y. Qi, CsPbI3 perovskite solar module with certified aperture area efficiency >18% based on ambient-moisture-assisted surface hydrolysis, Joule 8 (2024) 2851–2862. https://doi.org/10.1016/j.joule.2024.06.026
  7. R. Liu, H. Fei, J. Wang, T. Guo, F. Liu, Z. Wu, D. Wang, Unveiling the synergistic effect between the metallic phase and bridging S species over MoS2 for highly efficient nitrogen fixation, Appl. Catal. B-Environ. 343 (2024) 123469. https://doi.org/10.1016/j.apcatb.2023.123469
  8. X. Huo, S. Mariotti, Y. Li, T. Guo, C. Ding, P. Ji, S. Yuan, T. Li, N. Meng, X. Liu, et al., Unraveling the relationship between the phenethylammonium-induced 2D phase on the perovskite surface and inverted wide bandgap perovskite solar cell performance, Energy Environ. Sci. 17 (2024) 8658–8669. https://doi.org/10.1039/D4EE02133A
  9. T. Guo, H. Fei, R. Liu, F. Liu, D. Wang, Z. Wu, Coordinated adsorption/desorption kinetics enabled by surface sulfur decoration over Mo2C for boosted hydrogen evolution reaction, Adv. Funct. Mater. 34 (2024) 2407406. https://doi.org/10.1002/adfm.202407406
  10. T. Guo, H. Fei, R. Liu, F. Liu, D. Wang, Z. Wu, Constructing molybdenum vacancy defect for MoP with optimized p-band center towards high-efficiency hydrogen evolution, Appl. Catal. B-Environ. 343 (2024) 123480. https://doi.org/10.1016/j.apcatb.2023.123480
  11. C. Ding, P. Ji, T. Li, T. Guo, Z. Xu, T. Kim, H. Zhang, J. Wan, L.K. Ono, Y. Qi, Photoemission spectroscopy of battery materials, Appl. Phys. Rev. 11 (2024) 41331. https://doi.org/10.1063/5.0235835
  12. C. Zhang, T. Guo, L.K. Ono, S. Yuan, T. Wu, H. Wang, J. Zhang, X. Liu, X. Huo, C. Zhang, et al., Constructing heterostructure through bidentate coordination toward operationally stable inverted perovskite solar cells, Sol. RRL 7 (2023) 2300253. https://doi.org/10.1002/solr.202300253
  13. T. Wu, X. Xu, L.K. Ono, T. Guo, S. Mariotti, C. Ding, S. Yuan, C. Zhang, J. Zhang, K. Mitrofanov, et al., Graphene-like conjugated molecule as hole-selective contact for operationally stable inverted perovskite solar cells and modules, Adv. Mater. 35 (2023) 2300169. https://doi.org/10.1002/adma.202300169
  14. R. Liu, H. Fei, J. Wang, T. Guo, F. Liu, J. Wang, Z. Wu, D. Wang, Insights of active sites separation mechanism for highly efficient electrocatalytic N2 reduction to ammonia over glucose-induced metallic MoS2, Appl. Catal. B-Environ. 337 (2023) 122997. https://doi.org/10.1016/j.apcatb.2023.122997
  15. H. Fei, R. Liu, J. Wang, T. Guo, F. Liu, Z. Wu, D. Wang, Unveiling the competitive behavior by the orientated regulation of S-vacancy over MoS2 for highly effective N2 fixation, Chem. Eng. J. 476 (2023) 146895. https://doi.org/10.1016/j.cej.2023.146895
  16. H. Fei, R. Liu, J. Wang, T. Guo, Z. Wu, D. Wang, F. Liu, Targeted modulation of competitive active sites toward nitrogen fixation via sulfur vacancy engineering over MoS2, Adv. Funct. Mater. 33 (2023) 2302501. https://doi.org/10.1002/adfm.202302501
  17. D. Wang, Y. Song, T. Guo, R. Liu, Z. Wu, Construction of FeS2@MoS2 heterostructures for enhanced hydrogen evolution, Sustain. Energy Fuels 6 (2022) 2243–2248. https://doi.org/10.1039/D2SE00262K
  18. Z. Mu, T. Guo, H. Fei, D. Xu, Y. Mao, Z. Wu, D. Wang, Mn, P co-doped sharp-edged Mo2C nanosheets anchored on porous carbon for efficient electrocatalytic hydrogen evolution, Sustain. Energy Fuels 6 (2022) 903–909. https://doi.org/10.1039/D1SE01886H
  19. Z. Mu, T. Guo, H. Fei, D. Xu, Y. Mao, Z. Wu, D. Wang, Mn boosted the electrocatalytic hydrogen evolution of N, P co-doped Mo2C via synergistically tuning the electronic structures, Sustain. Energy Fuels 6 (2022) 3363–3370. https://doi.org/10.1039/D2SE00637E
  20. H. Fei, T. Guo, Y. Xin, L. Wang, R. Liu, D. Wang, F. Liu, Z. Wu, Sulfur vacancy engineering of MoS2 via phosphorus incorporation for improved electrocatalytic N2 reduction to NH3, Appl. Catal. B-Environ. 300 (2022) 120733. https://doi.org/10.1016/j.apcatb.2021.120733
  21. X. Zhang, T. Liu, T. Guo, Z. Mu, X. Hu, K. He, X. Chen, V.P. Dravid, Z. Wu, D. Wang, High-performance MoC electrocatalyst for hydrogen evolution reaction enabled by surface sulfur substitution, ACS Appl. Mater. Interfaces 13 (2021) 40705–40712. https://doi.org/10.1021/acsami.1c12143
  22. X. Zhang, T. Liu, T. Guo, X. Han, Z. Mu, Q. Chen, J. Jiang, J. Yan, J. Yuan, D. Wang, et al., Controlling atomic phosphorous-mounting surfaces of ultrafine W2C nanoislands monodispersed on the carbon frameworks for enhanced hydrogen evolution, Chin. J. Catal. 42 (2021) 1798–1807. https://doi.org/10.1016/S1872‐2067(21)63808‐1
  23. Z. Mu, T. Guo, H. Fei, Y. Mao, Z. Wu, D. Wang, Mn-doped porous interconnected MoP nanosheets for enhanced hydrogen evolution, Appl. Surf. Sci. 551 (2021) 149321. https://doi.org/10.1016/j.apsusc.2021.149321
  24. R. Liu, T. Guo, H. Fei, Z. Wu, D. Wang, F. Liu, Highly efficient electrocatalytic N2 reduction to ammonia over metallic 1T phase of MoS2 enabled by active sites separation mechanism, Adv. Sci. 9 (2021) 2103583. https://doi.org/10.1002/advs.202103583
  25. Z. Wu, K. Yu, T. Guo, Z. Mu, D. Wang, F. Liu, Modulating electronic structures of holey Mo2N nanobelts by sulfur decoration for enhanced hydrogen generation, Electrochim. Acta 364 (2020) 137219. https://doi.org/10.1016/j.electacta.2020.137219
  26. T. Liu, X. Zhang, T. Guo, Z. Wu, D. Wang, Boosted hydrogen evolution from α-MoC1-x-MoP/C heterostructures, Electrochim. Acta 334 (2020) 135624. https://doi.org/10.1016/j.electacta.2020.135624
  27. T. Guo, X. Zhang, T. Liu, Z. Wu, D. Wang, N, K Co-activated biochar-derived molybdenum carbide as efficient electrocatalysts for hydrogen evolution, Appl. Surf. Sci. 509 (2020) 144879. https://doi.org/10.1016/j.apsusc.2019.144879
  28. X. Zhang, J. Wang, T. Guo, T. Liu, Z. Wu, L. Cavallo, Z. Cao, D. Wang, Structure and phase regulation in MoxC (alpha-MoC1-x/beta-Mo2C) to enhance hydrogen evolution, Appl. Catal. B-Environ. 247 (2019) 78–85. https://doi.org/10.1016/j.apcatb.2019.01.086
  29. X. Zhang, T. Guo, T. Liu, K. Lv, Z. Wu, D. Wang, Tungsten phosphide (WP) nanoparticles with tunable crystallinity, W vacancies, and electronic structures for hydrogen production, Electrochim. Acta 323 (2019) 134798. https://doi.org/10.1016/j.electacta.2019.134798
  30. Z. Chen, T. Guo, Z. Wu, D. Wang, Boron triggers the phase transformation of MoxC (α-MoC1-x/β-Mo2C) for enhanced hydrogen production, Nanotechnology 31 (2019) 105707. https://doi.org/10.1088/1361-6528/ab5a25
  31. D. Wang, T. Guo, Z. Wu, Hierarchical Mo2C/C scaffolds organized by nanosheets as highly efficient electrocatalysts for hydrogen production, ACS Sustainable Chem. Eng. 6 (2018) 13995–14003. https://doi.org/10.1021/acssuschemeng.8b02469