Ting
发布于 2023-12-12 / 37 阅读

论文发表

[1] R. Liu, H. Fei, J. Wang, T. Guo, F. Liu, Z. Wu, D. Wang, Unveiling the synergistic effect between the metallic phase and bridging S species over MoS2 for highly efficient nitrogen fixation, Applied Catalysis B: Environmental. 343 (2024) 123469.
[2] T. Guo, H. Fei, R. Liu, F. Liu, D. Wang, Z. Wu, Constructing molybdenum vacancy defect for MoP with optimized p-band center towards high-efficiency hydrogen evolution, Applied Catalysis B: Environmental. 343 (2024) 123480. [link] [pdf]
[3] C. Zhang, T. Guo, L.K. Ono, S. Yuan, T. Wu, H. Wang, J. Zhang, X. Liu, X. Huo, C. Zhang, et al., Constructing heterostructure through bidentate coordination toward operationally stable inverted perovskite solar cells, Solar RRL. 7 (2023) 2300253.
[4] T. Wu, X. Xu, L.K. Ono, T. Guo, S. Mariotti, C. Ding, S. Yuan, C. Zhang, J. Zhang, K. Mitrofanov, et al., Graphene-like conjugated molecule as hole-selective contact for operationally stable inverted perovskite solar cells and modules, Advanced Materials. 35 (2023) 2300169.
[5] R. Liu, H. Fei, J. Wang, T. Guo, F. Liu, J. Wang, Z. Wu, D. Wang, Insights of Active Sites Separation Mechanism for Highly Efficient Electrocatalytic N2 Reduction to Ammonia over Glucose-Induced Metallic MoS2, Applied Catalysis B: Environmental. (2023) 122997.
[6] H. Fei, R. Liu, J. Wang, T. Guo, F. Liu, Z. Wu, D. Wang, Unveiling the competitive behavior by the orientated regulation of S-vacancy over MoS2 for highly effective N2 fixation, Chemical Engineering Journal. 476 (2023) 146895.
[7] H. Fei, R. Liu, J. Wang, T. Guo, Z. Wu, D. Wang, F. Liu, Targeted modulation of competitive active sites toward nitrogen fixation via sulfur vacancy engineering over MoS2, Advanced Functional Materials. (2023) 2302501.
[8] D. Wang, Y. Song, T. Guo, R. Liu, Z. Wu, Construction of FeS2@MoS2 heterostructures for enhanced hydrogen evolution, Sustainable Energy & Fuels. 6 (2022) 2243–2248.
[9] Z. Mu, T. Guo, H. Fei, D. Xu, Y. Mao, Z. Wu, D. Wang, Mn, P co-doped sharp-edged Mo2C nanosheets anchored on porous carbon for efficient electrocatalytic hydrogen evolution, Sustainable Energy & Fuels. 6 (2022) 903–909.
[10] Z. Mu, T. Guo, H. Fei, D. Xu, Y. Mao, Z. Wu, D. Wang, Mn boosted the electrocatalytic hydrogen evolution of N, P co-doped Mo2C via synergistically tuning the electronic structures, Sustainable Energy & Fuels. 6 (2022) 3363–3370.
[11] R. Liu, T. Guo, H. Fei, Z. Wu, D. Wang, F. Liu, Highly efficient electrocatalytic N2 reduction to ammonia over metallic 1T phase of MoS2 enabled by active sites separation mechanism, Advanced Science. 9 (2022) 2103583.
[12] H. Fei, T. Guo, Y. Xin, L. Wang, R. Liu, D. Wang, F. Liu, Z. Wu, Sulfur vacancy engineering of MoS2 via phosphorus incorporation for improved electrocatalytic N2 reduction to NH3, Applied Catalysis B: Environmental. 300 (2022) 120733.
[13] X. Zhang, T. Liu, T. Guo, Z. Mu, X. Hu, K. He, X. Chen, V.P. Dravid, Z. Wu, D. Wang, High-performance MoC electrocatalyst for hydrogen evolution reaction enabled by surface sulfur substitution, ACS Applied Materials & Interfaces. 13 (2021) 40705–40712.
[14] X. Zhang, T. Liu, T. Guo, X. Han, Z. Mu, Q. Chen, J. Jiang, J. Yan, J. Yuan, D. Wang, et al., Controlling atomic phosphorous-mounting surfaces of ultrafine W2C nanoislands monodispersed on the carbon frameworks for enhanced hydrogen evolution, Chinese Journal of Catalysis. 42 (2021) 1798–1807.
[15] Z. Mu, T. Guo, H. Fei, Y. Mao, Z. Wu, D. Wang, Mn-doped porous interconnected MoP nanosheets for enhanced hydrogen evolution, Applied Surface Science. 551 (2021) 149321.
[16] Z. Wu, K. Yu, T. Guo, Z. Mu, D. Wang, F. Liu, Modulating electronic structures of holey Mo2N nanobelts by sulfur decoration for enhanced hydrogen generation, Electrochimica Acta. 364 (2020) 137219.
[17] T. Liu, X. Zhang, T. Guo, Z. Wu, D. Wang, Boosted hydrogen evolution from α-MoC1-x-MoP/C heterostructures, Electrochimica Acta. 334 (2020) 135624.
[18] T. Guo, X. Zhang, T. Liu, Z. Wu, D. Wang, N, K Co-activated biochar-derived molybdenum carbide as efficient electrocatalysts for hydrogen evolution, Applied Surface Science. 509 (2020) 144879.
[19] X. Zhang, J. Wang, T. Guo, T. Liu, Z. Wu, L. Cavallo, Z. Cao, D. Wang, Structure and phase regulation in MoxC (α-MoC1-x/β-Mo2C) to enhance hydrogen evolution, Applied Catalysis B: Environmental. 247 (2019) 78–85.
[20] X. Zhang, T. Guo, T. Liu, K. Lv, Z. Wu, D. Wang, Tungsten phosphide (WP) nanoparticles with tunable crystallinity, W vacancies, and electronic structures for hydrogen production, Electrochimica Acta. 323 (2019) 134798.
[21] Z. Chen, T. Guo, Z. Wu, D. Wang, Boron triggers the phase transformation of MoxC (α-MoC1-x/β-Mo2C) for enhanced hydrogen production, Nanotechnology. 31 (2019) 105707.
[22] D. Wang, T. Guo, Z. Wu, Hierarchical Mo2C/C scaffolds organized by nanosheets as highly efficient electrocatalysts for hydrogen production, ACS Sustainable Chemistry & Engineering. 6 (2018) 13995–14003.